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ABSTRACT 
 
 

This paper presents an experimental investigation on using mixed culture for 

immobilization and co-immobilization for hydrogen production. The shape and diameter 

of the beads were investigated. Hydrogen was produced from 10 g.L
1

 glucose in 

anaerobic batch using immobilized mixed culture with extrusion dripping method. The 

alginate concentrations as immobilization material were 1%, 2%, and 3%. The mixed 

culture had three different biodigester sources consisting of cow dung, tofu waste, and 

fruit waste. The pretreatment of each mixed culture was acidification and enrichment. 

Then the mixed culture were mixed with immobilization material and inserted into a 

syringe, then dropped into 0.1M CaCl2. Activated carbon was added to alginate (co-

immobilization) with ratio 1:1. The results showed that bead using 1% and 2% alginate 

concentrations were a pear-shaped. The highest concentration of hydrogen (mol H2/mol 

glucose) was 0.029 for immobilized beads with 2% alginate concentration and the 

lowest hydrogen (molH2/mol glucose) was 0.009 for immobilized beads with 3% 

alginate concentration. Acetic acid was the most dominant. The highest VFA (mg.L
1

) 

was 695.85 for immobilized beads with 3% alginate concentration (acetic acid 271.49; 

propionic acid 163.33; isobutyrate acid 123.45; butyric acid 137.57). Most hydrogen was 

produced from 2% alginate concentration and spherical-shape. 
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INTRODUCTION 
 

 

Dwindling fossil fuel sources with its products in the form of greenhouse emissions make it 

necessary to search for alternative energy sources [1][2][3]. Hydrogen is a clean fuel 

because the final combustion product is water and calorific value is 143 GJ tonne
1

 [4]. 

Hydrogen can be produced by glucose fermentation through the metabolic pathways of the 

microbes. Microbial conversion of substrate to H2 and volatile fatty acid (VFA) 

[1][5][6][7][8]. Hydrogen production through anaerobic fermentation has advantages over 

the other processes because it has the potential to use wastewater and organic wastes[9]. 

Anaerobic fermentation stages involve hydrolysis of complex organic materials into simple 

compounds (glucose), followed by acidogenesis facilitated by acidogenic bacteria to simpler 

compounds produced carbon dioxide, hydrogen, and VFA such as butyrate and propionate 

acid. The last stage, acetogenesis occurred by acetogenic bacteria which is VFA is 

converted into acetic acid, carbon dioxide, and hydrogen [10]. 
 

Natural mixed culture is often chosen for fermentation because of its 

affordability and ease of access [11]. Amekan et al. (2014) [12] investigated that the 

influence of the mixed culture of three biodigester sources towards the production of 

hydrogen from melon waste in batch. The results showed that the combination of the 

mixed culture of three different biodigester sources consisted of cow dung, tofu waste, 

and fruit waste produced the highest hydrogen (231.02 mL.gVS
1

), compared with of 

one and two biodigester sources. Unfortunately, mixed culture contains bacterial 

diversity so that a process is needed to obtain the hydrogen-producing bacteria (HPB) 

such as acidification method [13][14]. Hu et al. (2008) [15] investigated that 

acidification pretreatment for sewage sludge increased hydrogen production rates. To 

increase the production rate and hydrogen yields, it was enriched by HPB[16] because 

HPB enrichment made HPB more stable on its life cycle [17]. 
 

The hydrogen production used as suspended cells are less preferred in 

biohydrogen production because suspended cells are prone to washout and cannot 

prolong during continuous modes[18], they cannot reusable and withstand the inhibitors 

during the fermentation process [19]. Therefore, the way to overcome its problem is 

immobilized cells[18][19]. Hydrogen production using immobilized mixed culture are 

four times more than suspended cells [20][21]. Hydrogen concentration using cell 

immobilized with a mixture matrix consisted of sodium alginate and activated carbon or 

sodium alginate and polyurethane were 50% of total biogas [22]. 
 

The immobilized matrix mostly used for biohydrogen production is alginate 

because of its affordability, simplicity, biocompatibility[23], less cost, easy to use, and 

highly accessibility [24]. Merugu et al.(2012) [25] studied that the maximum hydrogen 

 
 

3516 



Performance analysis of immobilized and co-immobilized enriched-mixed culture for 
hydrogen production 

 

 

production were occurred between the fifth and sixth day by immobilized pure culture with 

calcium alginate as a matrix. Co-immobilized pure culture using 2% sodium alginate and 

0.3% activated charcoal concentration with dripping extrusion method produced 50 mL 

hydrogen [26]. The optimum sodium alginate concentration was 2% which used 

immobilized mixed culture [26] and municipal sewage sludge [22][21] for biohydrogen 

production. Co-immobilization used two matrices where the activated carbon was an inert 

support matrix could strengthen the structure of the alginate beads [22][27]. 
 

Beads characterizations of size and shape was an important factor in hydrogen 

production. Azbar and Kapdan (2012) [28] stated that the alginate beads’ diameter was 

a very influential factor in immobilized cell, especially for hydrogen production. Beads 

diameter up to 6 mm caused efficient anaerobic hydrogen production, whereas beads 

diameter more than 6 mm caused substrate availability for limited cell metabolism and 

reduced hydrogen production. Beads morphology significantly affected mechanical 

stability. Al-Hajry et al. (1999)[29] stated that if the beads are not spherical, it would 

reduce beads strength. The most convenient and popular method to produce spherical 

beads was extrusion dripping [30]. Factor affecting to the shape and size of the beads 

could be qualitatively analysed used a dimensionless number of Ohnesorge (Oh) [31]. 

The Ohnesorge number is related to the viscosity, density, and surface tension of the 

fluid [32]. 
 

Up to now, there is no research on characterisation of alginate beads produced 

by the extrusion dripping method from enrichedmixed culture to the production of 

hydrogen. Therefore, this study aims to determined and verify the characterisation of 

co-immobilized and immobilized beads. 

 

MATERIAL AND METHODS 
 

 

Immobilized Material Characteristics 
 

Sodium alginate powder (12 g) (technical) characteristics were 47.11% (5.65 g) water 

content and 88.88% (10.67 g) ash content. Activated carbon (Merck) was analysed by 

Brunauer-Emmett-Teller (BET) method consisting of surface area, porosity total 

volume, and average porosity diameter were 738.524 m
2
g
1

, 0.6365 cm
3
g
1

, and 1.724 

nm, respectively. The pore size wass measured by Barrett-Joyner-Halenda (BJH) 

method consisting of 250 nm (86.27 %) and < 2 nm (13.73 %). 

 

Substrate and Composition Medium 
 

Glucose (10 g.L
1

) was used as a carbon source. The composition of the enrichment 

medium and fermentation nutrients used were similar to previous experiment [33]. 
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Mixed Culture 
 

Mixed culture was obtained from biodigesters consisting of cow dung (ECDD), tofu 

waste (ETD) and fruit waste (FW) in Yogyakarta, Indonesia. Mixed culture 

characteristics are shown in Table 1. 

 

Table 1. Mixed culture characteristic  

 Mixed culture pH TS, mg.mL
-1 

VS, mg.mL
-1 

 ETD 7 4.71 3.27 

 FW 5 7.49 5.61 

 ECDD 7 10.87 8.71 
     

 
 

The treatment of mixed culture prior to the fermentation process was 

acidification and enrichment wherein firstly, enrichment is carried out on each 

biodigester and finally, all of the third enrichment were mixed. 
 

The mixed culture was pre-treated to deactivate the hydrogenotrophic methanogens 

prior to use in the HPB enrichment. This deactivation was conducted by adding 2M HCl to 

pH 3 and keeping it for 24 hours. The pH was then further adjusted back to pH 7 by adding 

2 M NaOH [13]. HPB enrichment was done in 100 mL vials with 45 mL volume. 

Enrichment of mixed cultures was performed three times. Then, each mixed culture was 

taken as 2 mL to be mixed in the medium enrichment for 24 hours. 

 

Preparation of Immobilized and Co-immobilized Mixed Culture 

Immobilized Mixed Culture 
 

As much as 45 mL enrichedmixed culture centrifuged at 4000 rpm for 10 minutes and 

then it was harvested and washed twice by using 10 mL of 0.97 % NaCl. The three 

sources of mixed culture were combined with 1 g sodium alginate (1% w/v) and 100 mL 

of 0.97% NaCl. The mixture were put into the syringe and dropped into 0.1 M CaCl2 to 

make beads. These beads and CaCl2 solution were stored at 4°C for 30 minutes. The 

beads were washed with distilled water before used. The immobilized beads using 2% 

and 3% alginate concentrations were made by under the same experimental conditions 

as 1% alginate concentration. 

 

Co-immobilized Mixed Culture 
 

One gram activated carbon (Merck) was added to the three mixed culture source with 

50 mL of 0.97% NaCl. Biodigesters enrichment, activated carbon, and 50 mL of 0.97% 

NaCl were mixed then combined them with solution comprising 1 g of sodium alginate 
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(1% w/v). Then, the mixture was put into a syringe. The ratio to make the 

coimmobilized beads with added activated carbon to alginate was 1:1. 

 

Batch Hydrogen Production 
 

Production medium consists of 60% of nutrients (30 mL), 30% of the substrate (15 mL), 

and 10% mixed culture (5 mL) of working volume [12]. The number of beads used was the 

same as the previous experiments [33]. The average weight of immobilized beads and co-

immobilization for the three concentrations used in hydrogen production were 3 g and 3.5 g, 

respectively. HPB of ca. 0.3945 g.L
1

 for immobilization and 0.635 g.L
1

 for co-

immobilization. The initial pH in each vial was determined before flushing with N2 for 3 

minutes. The vials were kept in incubator and the temperature was maintained at 36
o
C 

(MRK I B-S, U.K). Analysis of hydrogen and VFA was conducted at the twentieth hour. 

All treatments were conducted in two replicates. The co-immobilized beads were used for 

hydrogen production under the same experimental conditions with 1% immobilized beads. 

 

Analytical Methods 
 

Hydrogen was analyzed using gas chromatography (GC) Shimadzu GC 8A (Japan) 

equipped with a thermal conductivity detector (TCD) and molecular column sieve 5A 

(MS-5A) with 5m column length.Temperature of column, detector, and injector were 

set at 60
o
C, 70

o
C, and 70

o
C, sequentially. Nitrogen was used as carrier gas with an inlet 

pressure of 100 kPa. VFA (acetic acid, butyric acid, isobutyrate acid, and propionic 

acid) was analyzed by gas chromatography (HP 5890, Japan) with temperature of the 

column, detector, and injector were set at 60
o
C, 260

o
C, and 250

o
C, respectively. 

Agilent column FFAP capillary type had 30 m length. The carrier gas was helium. 

 

RESULTS AND DISCUSSION 
 

 

Immobilized and Co-immobilized Beads Characterisation 
 

Shape of immobilized beads and co-immobilized with 1%, 2%, and 3% of alginate 

concentrations which are presented in Figure 1 and Figure 2. 
 
 
 
 
 
 
 
 

 

Figure 1. Immobilized beads with alginate concentration a) 1%, b) 2%, and c) 3% 
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Figure 1 shows that the shape of immobilized beads with 1% alginate 

concentration (1a) was not spherical, while the beads spherical shape was obtained at 2 

% (1b) and 3 % (1c) alginate concentration. 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Co-immobilized beads with a) 1%, b) 2% and c) 3% of alginate concentrations 

Figure 2 shows that shape of co-immobilized beads for all alginate concentrations were 

spherical, although Figure 2a was smaller than the two others. Co-immobilized and 
 

immobilized beads size and analysis of Ohnesorge number (Oh) of this experiment are 

presented in Table 2 and Table 3, respectively. 

 

Table 2. Diameter of beads   

 
Alginate concentration (%) 

Diameter of beads (mm) 
   

 

Immobilized Co-immobilized   
    

 1 3.9 4.1 

 2 3.9 4.2 

 3 4.2 4.3 
    

 

Table 3. Experimental conditions 
Alginate 

concentration 

(%) 

Density 

(Kg.m
-3

) 

Dinamic Viscosity 

(Kg.m
-1

.s
-1

) 

Surface Tension 

(Kg.m.s
-2

)[33] 

Nozzle 

Diameter 

(m) 

Oh 

1 999.424 0.00514 0.07 0.0022 0.013 

2 990.632 0.03132 0.07 0.0022 0.080 

3 989.189 0.09332 0.06 0.0022 0.258 

  
 
 

Table 3 shows that 1% and 2% alginate concentrations had Oh < 0.24, while 3% 

alginate concentration had Oh > 0.24. The average diameter of immobilized beads was 

4.04 mm, whereas that of the co-immobilized beads was 4.21 mm. Generally, beads 

diameter was 1─5 mm [34]. The differences of diameters between the immobilized and 

co-immobilized beads were caused by gravity and surface tension imbalance when 

beads dropped from the tip dropper [35]. Consequently, if the beads diameter decreased, 

the surface tension also decreased. 
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Beads shape was influenced by parameters including physical properties such as 

viscosity or alginate concentration, surface tension, the distance of dropper to gel 

solution, and stirring speed [30]. Characterization of beads size and shape were defined 

in a dimensionless number of Ohnesorge (Oh) (Eq. 1): 
 

Oh =  
D



 
      (1) 

 

where  surface tension of alginate solution (kg.m
1

s
1

),  is alginate solution density 

(kg m
3

), D is the diameter of the dropper (m),  is the surface tension of alginate 

solution (kg m
1

s
1

). If alginate concentration have Oh< 0.24 (example concentration 

alginate as 0.5g L
1

) so beads shape were deformed transition from tears to a ball, and 

then into egg-shape [35]. 
 

It shows that immobilized beads shape with 1%, 2% and 3% of alginate 

concentrations were not uniform (Figure 1), whereas all of co-immobilized beads shape 

was spherical (Figure 2). However, the Oh numbers in Table 3 indicated that both the 

immobilized and co-immobilized beads with 1% and 2% of alginate concentrations had 

the final shape like a pear, while the final shape of beads with 3% alginate concentration 

was spherical. 
 

Co-immobilized beads shape with 3% alginate concentration was only 60% 

round-shaped and the rest of round noodles (Figure 3a) and tear shape (Figure 3b). 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Co-immobilized beads form with 3% alginate concentration 

a) noodle-like; b) tear 

 

Alginates with concentration below 1.5% produced non spherical and very fragile 

beads [36][37], whereas 23% concentration of alginate produced spherical and strong 

beads[37]. A research by Kong et al. [38] demonstrated that the alginate concentration 

above 4% caused a very viscous solution, so it was difficult to produce spherical beads. 

 

Hydrogen Production Using Immobilized and Co-immobilized Beads 
 

Plot between both the beads (1%, 2%, and 3% of alginate concentrations) and hydrogen 

yields (ml H2/mol glucose) are presented in Figure 4. 
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Figure 4. Alginate concentration (%) toward hydrogen yields (mol of H2/mol 

glucose) for immobilized and co-immobilized beads. 

 

 
 

Figure 4 shows that hydrogen yields (mol H2/mol glucose) for immobilized 

beads was 0.0095, 0.017, and 0.009, meanwhile for co-immobilized beads was 0.027, 

0.029, and 0.025. Figure 4 shows that the hydrogen yields (mol H2/mol glucose) on the 

co-immobilized bead is larger than the immobilized bead. It is assumed that alginate 

stability reduced due to chelate complex compound (for example, phosphates), cells 

growth in the beads, as well as the evolution of gas causing pressure inside the beads 

will rise so that the integrity of the gel was reduced [22][28]. Although microbes growth 

in both beads, but the presence of activated carbon in the co-immobilized beads was 

stronger than the immobilization beads [22][27]. 
 

The largest hydrogen yields (mol H2/mol glucose) was produced at 2% alginate 

concentration in both beads. It is assumed that 2% alginate concentration has spherical-

shaped. Whereas hydrogen yields of co-immobilized beads for all alginate concentration 

have almost similar. It can be assumed that all alginate concentration of co-immobilized 

beads has spherical-shaped. The highest hydrogen production was for 3% of alginate 

concentration which was 0.029 mol H2/mol glucose. It showed that activated carbon 

acted as a support for alginate matrix. 
 

The average of immobilized and co-immobilized beads this study is less 100 

times than Wu et al.(2002)[22] (Table 4). It is assumed that the microorganisms used 

in this study were 16.7%, the alginate material was technical, and the concentration of 

CaCl2 was 50%. 
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Table 4. Comparative hydrogen yields of immobilized mixed culture used 
 

entrapment method in literature and present study in batch fermentation 
Microorganism 

 

Substrate Temperature 

(
o
C) 

Carrier 

Material 

algiante 

concentration (%) 

H2 Yield Ref. 

Sewage sludge sucrose 35 CA 2 1.7 molH2/mol 

sucrose 

[22] 

   CA/AC 2/2 2.6 molH2/mol 

sucrose 

 

Three different 

biodigester 

sources 

glucose 36 CA 2 0.017 

molH2/mol 

glucose 

This 

study 

   CA/AC 2/2 0.029 

molH2/mol 

glucose 

 

CA=calcium alginate; AC=activated carbon 
 

 

Effect of Alginate Concentration on VFA Production 
 

The plot between hydrogen production (%) and VFA (mg.L
1

) and VFA (mg.L
1

) value 

for co-immobilized beads and immobilized beads with 1%, 2% and 3% of alginate 

concentrations at the twentieth hour for glucose fermentation time are presented in 

Figure 5 and Table 5. 
 

 

 

Figure 5. Concentration of VFA (mg.L
1

) and H2 (%) at the twentieth hour for glucose 

fermentation time with beads co-immobilized and immobilized. Hac: acetic 

acid; HPR: propionic acid; HIB: isobutyrate acid; HBU: butyric acid 
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Figure 5 shows that VFA and hydrogen production for co-immobilized beads 

1% alginat concentration was greater than immobilized beads. Two percentage alginate 

concentration of both beads for VFA was the lowest of the others, but its concentration 

was the highest hydrogen production. On the contrary, for immobilized beads, the VFA 

value was higher than co-immobilized beads but the hydrogen value is lower than the 

co-immobilized beads. Both are assumed that an effect on the metabolic pathway in the 

cells. 

 

Table 5. VFA (mg/L) value for co-immobilized and immobilized beads   

Alginate 

concentration 

(%) 

VFA (mg/L) for co-immobilized beads VFA (mg/L) for immobilized beads 

Hac Hpr HIB HB Hac Hpr HIB HB 

1 239.09 150.09 120.78 132.92 210.43 139.79 123.11 117.51 

2 185.69 127.88 120.10 110.92 201.91 137.31 120.83 122.69 

3 220.87 143.92 119.75 132.19 271.49 163.33 123.45 137.57 
 
 

Glycolysis is the key of metabolic pathways in the cells in which the glucose is 

converted to pyruvate (intermediate metabolite). In anaerobic conditions, pyruvate 

reacts on acidogenesis and produce VFA include acetic acid, butyric acid, and propionic 

acid. Theoretically, the maximum yields of H2 if all glucose was converted to acetic 

acid was 4 mol H2 per mole of glucose (Eq. 2) and butyric acid was 2 mol H2 per 

glucose (Eq. 3). However, acetic acid was produced not only from glucose 

decomposition but also from the conversion of hydrogen and carbon dioxide (Eq. 4). 

While propionic acid formation consumed by hydrogen (Eq.5). Ethanol (Eq.6) and 

lactic acid (Eq. 7) were a by-product in addition to the carbon dioxide from glucose 

fermentation [39]. 

 

C6H12O6 + 2H2O→2CH3COOH + 4H2 + 2CO2                (2) 

C6H12O6 + 2H2O→CH2CH2CH2COOH + 2H2+ 2CO2    (3) 

2CO2 + 4H2 →CH3COOH + 2H2O      (4) 

C6H12O6 + 2H2 →2CH3CH2COOH + 2H2O     (5) 

C6H12O6 →2CH3CH2OH + 2CO2      (6) 

C6H12O6 →2CH3CHOHCOOH + 2CO2      (7) 
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Figure 5 shows that percentage of hydrogen from co-immobilized beads was 

greater than immobilized beads. It is assumed that all acetic acid was formed from 

hydrogen (Eq.4). The low percentage of hydrogen of this experiment was due to 

converted of glucose to carbon dioxide (Eq. 2, 3, 6, and 7). 

 

CONCLUSIONS 
 

 

Bead characteristics can be determined from the shape and size. The bead shape 

depends on the concentration of alginate. Alginate concentrations of 1% and 2% in 

immobilized beads tend to be pear-shaped, whereas co-immobilized beads shape for all 

alginate concentrations was generally spherical. The average diameter of the both beads 

was 4 mm. The highest of hydrogen yields was obtained in co-immobilized beads with 

2% alginate concentration, whereas the lowest hydrogen yields was immobilized beads 

with 3% alginate concentration. The hydrogen production was not proportional to VFA 

formation. Immobilized beads with 3% alginate concentration was the highest VFA 

whereas co-immobilized beads with 2% alginate concentration was the highest 

hydrogen production. 
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