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ABSTRACT 

 

This paper presents the residual stress behaviour under various values of friction 

coefficients and scratching displacement amplitudes. The investigation is based on 

numerical solution using explicit finite element method in quasi-static condition. Two 

different aeroengine materials, i.e. Super CMV (Cr-Mo-V) and Titanium alloys (Ti-6Al-

4V), are examined. The usage of FEM analysis in plate under normal contact is validated 

with Hertzian theoretical solution in terms of contact pressure distributions. The residual 

stress distributions along with normal and shear stresses on elastic and plastic regimes of 

the materials are studied for a simple cylinder-on-flat contact configuration model 

subjected to normal loading, scratching and followed by unloading. The investigated 

friction coefficients are 0.3, 0.6 and 0.9, while scratching displacement amplitudes are 

0.05 mm, 0.10 mm and 0.20 mm respectively. It is found that friction coefficient of 0.6 

results in higher residual stress for both materials. Meanwhile, the predicted residual 

stress is proportional to the scratching displacement amplitude, higher displacement 

amplitude, resulting in higher residual stress. It is found that less residual stress is 

predicted on Super CMV material compared to Ti-6Al-4V material because of its high 

yield stress and ultimate strength. Super CMV material with friction coefficient of 0.3 

and scratching displacement amplitude of 0.10 mm is recommended to be used in contact 

engineering applications due to its minimum possibility of fatigue.  

 

Keywords: Friction coefficient; sliding amplitude; Cylinder-on-flat; Ti-6Al-4V; Super   

CMV 

INTRODUCTION 

 

Residual stress in contact mechanics is one of the crucial and interesting subjects in 

fatigue life, part distortion and corrosion resistance are influenced by residual stress, 

especially in engineering applications such as automotive, machining, nuclear power 

plant and aeroengine field [1]. Residual stress can be defined as the stress that remains in 

a body after the removal of the original source of the stress. The influences of the residual 

stress might be beneficial or detrimental depending on the magnitude and distribution of 

the stress [2]. Fatigue life of material is influenced by residual stress where a number of 

studies demonstrated the effect of residual stress in prediction of fatigue life [3-6]. 

Advancement in numerical residual stress prediction approach is essential as 

experimental method has numerous limitations such as intensive labour, time consuming, 

limited sample size, shape, accuracy of measurement, machine capacity and operator skill 

[1, 3]. So, a wide range of engineering problems is solved using finite element approach 

[7-10]. It is necessary to study the effect of friction coefficient and scratching or sliding 
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displacement amplitude on the residual stress. Super CMV (Cr-Mo-V) and Titanium 

alloys (Ti-6Al-4V) materials have been examined by a number of researchers because of 

their wide range of applications in aeroengines and gas turbines [11-18]. A number of 

studies demonstrated the response of residual stress influenced by the coefficient of 

friction and scratching or sliding [19, 20]. Proper numerical model and contact 

formulation must be employed to signify the contact residual stress behaviour using finite 

element simulations [21, 22]. A stress-based finite element model of friction behaviour 

effect on residual stresses is presented by Yang and Liu [3], where significant role of 

residual stress in determining the fatigue life is reported. Meanwhile, Liu and Guo [23] 

demonstrated the sensitivity of residual stress prediction depending on friction coefficient 

in the study of finite element analysis of the effect of sequential cuts and tool-chip friction 

on residual stresses in a machined layer. In addition, the obtained residual stress in the 

proposed semi-analytical method for rolling and sliding contact by Foletti and Desimone 

[24] gives good agreement with finite element method considering non-linear kinematic 

hardening model. The study of directional development of residual stress and surface 

fatigue during sliding contact was investigated by Linz et al. [25], which shows that 

transversal residual stress increases to 250-300 MPa after the 10th cycle and remains 

constant for any further increment in sliding cycles. However, to the best of the author’s 

knowledge, far too little attention has been paid to compare the friction coefficient and 

displacement amplitude on residual stress simulation responses on elastic-plastic half-

space of advanced alloys, including aeroengine materials such as Ti-6Al-4V and Super 

CMV alloys.  

In this paper, von Mises residual stress along with normal and shear stress 

distributions using various values of friction coefficients and scratching displacement 

amplitudes for a cylinder-on-flat contact configuration model under quasi-static 

condition are predicted for Super CMV and Ti-6Al-4V alloys using explicit finite 

element approach. The contact pressure distributions for both material models is verified 

and compared to Hertzian contact theoretical solution. The effect of friction coefficient 

and scratching displacement amplitude on residual stress is compared and studied.  

 

FE MODELLING APPROACH 

 

A commercial FE software ABAQUS/Explicit is employed to analyse the residual stress 

along with normal and shear stress distributions in quasi-static condition as explicit 

approach is suitable for complex contact problems with material degradation and failure 

[26]. At first glance, it appears that the implicit solver would be the appropriate choice 

for modelling highly nonlinear static problems. However, explicit solvers are more 

efficient for this class of problems as explicit finite element method is suitable for solving 

wave propagation analysis and high-speed (short duration) dynamics, drop tests and crash 

analyses of structural members, large, nonlinear, quasi-static analyses, deep drawing, 

blow molding, and assembly simulations, highly discontinuous post buckling and 

collapse simulations, structural acoustics and coupled temperature-displacement. A 

cylinder-on-flat contact configuration model based on earlier experimental studies [13, 

14] is employed throughout the simulation. Figure 1 illustrates the corresponding 2D 

Finite element model consisting of rectangle as a substrate with dimension of 12 × 6 mm 

and half-circle as an indenter with 6 mm radius, R. Two different aeroengine materials, 

i.e. high strength steel Super CMV (Cr-Mo-V) and light weight alloy Ti-6Al-4V, are 

examined in this study.  

As explicit algorithm requires density, the density values, ρ of 7.94 x 10-9 
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tonne/mm3 and 4.43 x 10-9 tonne/mm3 are taken for Super CMV and Ti-6Al-4V 

respectively. The modulus of elasticity, E of 200 GPa and 115 GPa assigned for Super 

CMV and Ti-6Al-4V. Meanwhile, similar Poisson’s ratio, v of 0.3, is employed for both 

materials [13, 27]. The plasticity data for Super CMV and Ti-6Al-4V material is obtained 

from the study presented by Leen et al. [28]and Benedetti & Fontanari [29] as shown in 

Table 1.  

 

 

 
 

Figure 1. Partitioned 2D Finite element model. 

 

Table 1. Plastic properties of Super CMV and Ti-6Al-4V [28, 29]. 

 

Yield stress, MPa 

(Super CMV) 

Plastic strain 

(Super CMV) 

Yield stress, MPa 

(Ti-6Al-4V) 

Plastic strain 

(Ti-6Al-4V) 

1240.36 0 744.57 0 

1419.01 0.000401 811.43 0.001539 

1551.73 0.001244 844.00 0.003049 

1648.71 0.004111 857.71 0.004025 

1674.23 0.007506 875.71 0.006038 

1623.19 0.010690 885.14 0.008021 

1561.94 0.012524 897.14 0.010034 

1505.79 0.013958 907.43 0.012017 

 

The plane strain, explicit linear quadrilateral elements were used at the contact 

region throughout the simulation as high reliability contact performance can be achieved, 

especially for frictional contact problems. The size of the mesh assigned at the contact 

region is about 5 µm, while edge seeding is practiced for mesh transition from fine to 

course. A study on mesh sensitivity has been carried out on the influence of element size 

in the contact region where the size of the element varied from 10 µm to 1 µm. In addition, 
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5 µm mesh size is considered appropriate for this study as the additional mesh refinement 

gives a negligible effect on predicted stress distributions, but increases the computational 

time. Mesh module is refined at the contact region in order to obtain better residual stress 

prediction with reasonable CPU times as shown in Figure 2. The cylinder (indenter) and 

flat surface (substrate) are assigned as master and slave surfaces respectively. The 

surface-to-surface contact technique with finite sliding formulation is used for contact 

interactions. In addition, Penalty friction formulation with friction coefficient, µ = 0.3 is 

employed. The side and bottom surfaces of the flat plate are fully constrained from any 

translation and rotation motions.  

 
Figure 2. 2D Finite element mesh module. 

 

Dynamic explicit steps with time period of 0.00015 s are assigned. The calculated 

kinetic energy term should remain below 5% of the total internal energy of the system for 

a quasi-static deformation process and this condition is achieved when t = 0.00015. The 

simulation is performed with three steps, i.e. loading, scratching and unloading. A 

concentrated force, P of 1000 N/mm applied at the indenter during loading throughout 

the analysis. Besides that, a displacement amplitude, δ of 0.1 mm is applied during 

scratching. A smooth step function is used to ramp up the loading and displacement 

progressively from zero to its maximum amplitude as shown in Table 2 to avoid undesired 

sudden dynamic effect. The Equation’s type constraint is used to make sure the indenter 

moves concurrently with the point load. The friction coefficient of 0.3, 0.6 and 0.9, while 

scratching displacement amplitudes of 0.05 mm, 0.10 mm and 0.20 mm applied in the FE 

simulation to study the influence on residual stress along with normal and shear stress 

distributions. The FE model is validated with Hertzian theoretical solution by verifying 

the contact pressure distributions.  
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Table 2. Smooth step amplitude table 

 

Time, s  Load amplification factor 

0 0 

0.00015 1 

 

RESULTS AND DISCUSSION 

 

The von Mises residual stress along with normal and shear stress distributions are 

predicted using different friction coefficients and scratching displacements amplitude 

using explicit finite element approach. Super CMV and Ti-6Al-4V materials contact 

conditions are examined. The contact pressure distributions are taken from the surface of 

the substrate whereas von Mises stress, residual stress, normal stress and shear stress are 

taken from the specific element at the subsurface of the substrate. 

 

Validation of Contact Variables 

 

Figure 3 shows FE predicted contact pressure distributions for Super CMV and Ti-6Al-

4V compared to Hertzian theoretical solution. The trend of the graph for both materials 

shows that the maximum contact pressure occurred at the center of the contact region. 

Based on Hertzian contact theoretical solution, 1707.315 MPa of maximum contact 

pressure, po and 0.1865 mm of contact half-width length, a calculated for Super CMV 

while, 1294.636 MPa of maximum contact pressure, po and 0.2459 mm of contact half-

width length, a calculated for Ti-6Al-4V. The FE predicted maximum contact pressure, 

po for Super CMV and Ti-6Al-4V are 1704.54 MPa and 1286.24 MPa, whereas 0.195 

mm and 0.255 mm of contact half-width length, a is obtained respectively. The predicted 

contact variables give good agreement with Hertzian theoretical solution as the 

percentage error less than 5 % is achieved, as shown in Table 3.  

 

Table 3. Contact variables results and percentage error 

 

 

The maximum contact pressure, po, and half- width contact length, a, display 

good agreement with Hertzian theoretical solution with lower percentage errors for both 

materials. In addition, the maximum contact pressure occurred at the centre of the contact 

region as the stress intensity is higher at the contact point during loading process [31]. 

The higher contact pressure occurs on Super CMV compared to Ti-6Al-4V because of its 

high strength. Besides that, the contact half-width length, a of Ti-6Al-4V higher than 

Super CMV for same amount of loading as Super CMV has higher hardening curve of 

the material compared to that of Ti-6Al-4V alloy. In addition, Super CMV material has 

higher elastic modulus and ultimate strength where it can withstand higher loads 

Material Super CMV Ti-6Al-4V 

Maximum Contact pressure, MPa (HERTZ) 1707.315 1294.636 

Maximum Contact pressure, MPa [30] 1704.540 1286.240 

% error 0.163 0.649 

Contact half-width length, mm (HERTZ) 0.187 0.246 

Contact half-width length, mm [30] 0.195 0.255 

% error 4.278 3.659 
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compared to Ti-6Al-4V. The percentage errors for maximum contact pressure and contact 

half-width length are due to the elastic half-space assumption employed in the Hertzian 

contact theoretical solution. 

 

(a) 

 
(b) 

 

 
Figure 3. Contact pressure and contact half-width length comparison between FEM 

analysis and Hertzian contact theoretical solution for (a) Super CMV and (b) Ti-6Al-

4V. 
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Influence of Friction Coefficient and Displacement Amplitude on Normal Stress 

Distributions 

 

Figure 4 illustrates normal stress history using different coefficients of frictions for Super 

CMV and Ti-6Al-4V materials. The graph shows a trend where negative normal stress is 

recorded as the force acts downwards in –y direction normal to the substrate. The normal 

stress acting on Super CMV is higher than Ti-6Al-4V. The normal stress increases during 

loading for all cases, whereas the effect of friction coefficient obviously can be seen 

during scratching for both materials. The higher coefficient of friction reduces the normal 

stress, where lower normal stress is noted for 0.9 friction coefficient compared to 0.6 and 

0.3, especially during scratching. The normal stress of substrate is relaxed after the 

removal of load for all conditions.     

 

 
Figure 4. The normal stress history for different friction coefficients. 

 

 
Figure 5. The normal stress history for different displacement amplitudes. 
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Figure 5 illustrates normal stress history using different scratching displacement 

amplitudes for Super CMV and Ti-6Al-4V materials. The trend of the graph shows that 

negative normal stress is noted as the load acts downwards in –y direction normal to the 

surface of the substrate. In addition, the normal stress acts on Super CMV is greater 

compared with Ti-6Al-4V. The normal stress rises during loading for all the conditions, 

whereas the effect of displacement amplitude is noticeable during scratching for both 

materials. The higher displacement amplitude reduces the normal stress, as lower normal 

stress is predicted for displacement of 0.2 mm compared to 0.1 mm and 0.05 mm, mainly 

during scratching. The normal stress of the substrate is gradually reduced after the 

unloading for all the displacement conditions.The effect of friction coefficient and 

scratching displacement amplitude is significant in normal stress graphs. The compressive 

stress acting on the sub surface’s element during loading causes the normal stress to be 

higher during that specific step. Friction coefficients and displacement amplitude do not 

influence the compressive normal stress during loading. Meanwhile, a visible effect of 

friction coefficient and displacement amount can be noticed during the scratching as 

normal stress reduces during that particular period. This is mainly due to the occurrence 

of the tensile normal stress during scratching. Such effect can be noticed significantly for 

higher amounts of friction coefficient and displacement amplitude.  

Normal stress is based on compressive stress. Higher the compressive stress 

results in high normal stress. During scratching step, the tensile stress occurs together 

with compressive stress. The tensile stress reduces compressive stress, thus resulting in a 

drop in normal stress. In addition, the response of friction coefficient is more obvious 

compared to displacement amplitude due to higher surface traction. Furthermore, the 

normal stress occurring on Super CMV material is higher for all the steps and conditions 

because of the high ultimate strength compared to Ti-6Al-4V. 

 

Influence of Friction Coefficient and Displacement Amplitude on Shear Stress 

Distributions 

 

Figure 6 shows shear stress history using different coefficients of frictions for Super CMV 

and Ti-6Al-4V materials. The trend of the graph shows that shear stress is similar for the 

entire friction coefficient during loading according to the material. The shear stress is 

higher during earlier stage of the scratching for friction coefficient of 0.3 and slowly 

decreases; while for the 0.6 and 0.9, the shear stress is higher at the final stage of the 

scratching. The shear stress distribution is almost similar for friction coefficient of 0.6 

and 0.9 according to the material. The shear stress acting on Super CMV is higher than 

Ti-6Al-4V. The higher coefficient of friction increases the shear stress, where lower shear 

stress is noted for 0.3 friction coefficient compared to 0.6 and 0.9, particularly during 

scratching. The shear stress of the substrate is reduced gradually during unloading, but 

higher friction coefficient causes more fluctuations for both materials.   

Figure 7 shows shear stress history using different scratching displacement 

amplitudes for Super CMV and Ti-6Al-4V materials. The trend of the graph displays that 

shear stress is similar for all the displacement amplitudes during loading according to the 

materials. The shear stress is higher at the initial stage of the scratching and slowly 

decreases. The reduction in shear stress during scratching is very significant for higher 

displacement amplitude for both materials. Besides that, the shear stress acting on Super 

CMV is higher than Ti-6Al-4V. The higher scratching displacement amplitude increases 

the shear stress, where lower shear stress is recorded for 0.05 mm displacement compared 
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to 0.1 mm and 0.2 mm, mainly during scratching. The shear stress of substrate is reduced 

progressively during unloading. 

 

 
 

Figure 6. The shear stress history for different friction coefficients. 

 

 
 

Figure 7. The shear stress history for different displacement amplitudes. 

 

The shear stress is also influenced by the effect of the friction coefficient and 

scratching displacement amplitude for both materials. There are no significant changes 

on shear stress due to alteration of analysed variables. The shear stress distribution is 
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mainly affected during scratching as element stretched during that particular step. The 

higher friction induced and causes shear traction due to higher friction coefficient which 

results in significant shear stress. Meanwhile, higher displacement amplitude reduces the 

shear stress as the initial shear traction passed to the following elements of the subsurface 

parallel to the displacement directions and motion. Higher friction coefficient causes 

more friction on the substrate when the indenter is scratching on it. Higher friction results 

in shear traction on the surface and causes the value of the shear stress to become more 

significant.  

 

Influence of Friction Coefficient and Displacement Amplitude on Von Mises Stress 

Distributions 

 

Figure 8 illustrates von Mises stress history of different friction coefficients for Super 

CMV and Ti-6Al-4V materials. The trend of the graph shows that Von Mises stress is 

increasing simultaneously for all the friction coefficients during loading according to the 

material. The maximum stress is recorded during scratching for all the friction cases. 

Higher friction coefficient displays higher von Mises stress while lower stress is noted 

for friction coefficient of 0.3. Meanwhile, only an insignificant difference is noted 

between 0.6 and 0.9 respectively. The von Mises stress acting on Super CMV is higher 

than Ti-6Al-4V. The unloading process causes gradual drop in stress, where residual 

stress can be noticed.   

 

 
 

Figure 8. The von Mises stress history for different friction coefficients. 

 

Figure 9 illustrates von Mises stress history of different scratching displacement 

amplitudes for Super CMV and Ti-6Al-4V materials. The trend of the graph shows that 

von Mises stress is increasing concurrently for all displacement amplitudes during loading 

stage according to the materials. The maximum stress is predicted during scratching for 

all the displacement cases. Higher displacement amplitude exhibits higher von Mises 

stress especially at the earlier stage of scratching. In addition, the reduction in von Mises 
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stress during scratching is visible in Super CMV material compared to Ti-6Al-4V. The 

predicted von Mises stress acting on Super CMV is greater than Ti-6Al-4V. The 

unloading process causes sudden drop in stress, where residual stress can be detected.  

 

 
Figure 9. The von Mises stress history for different displacement amplitudes. 

 

The effect of the friction coefficient and scratching displacement amplitude can 

be seen in the von Mises stress graphs. The von Mises stress increases constantly during 

loading for all conditions as the result of the force acts on the material. The maximum 

stress is achieved during scratching stage as the effect of frictional force increases the 

stress for higher friction coefficients. Meanwhile, higher displacement amplitudes show 

that stress is reduced as the load propagates from one place to another; thus, stress 

concentration is distributed along with the displacement, especially in Super CMV 

material. The higher yield stress and ultimate strength of Super CMV properties cause 

this kind of effect where the effect of tensile stress is more significant in Super CMV 

material compared to Ti-6Al-4V. The higher yield stress and ultimate strength of Super 

CMV records higher von Mises stress compared to Ti-6Al-4V. 

 

Influence of Friction Coefficient and Displacement Amplitude on Von Mises 

Residual Stress Distributions 

 

Figure 10 shows von Mises residual stress history using different coefficients of frictions 

for Super CMV and Ti-6Al-4V materials. The residual stress can be noticed at the 

complete unloading. Super CMV material displays lower residual stress compared to Ti-

6Al-4V. The residual stress recorded for Super CMV with friction coefficient of 0.3, 0.6 

and 0.9 are 42.189 MPa, 265.989 MPa and 224.334 MPa, while for Ti-6Al-4V are 

240.878 MPa, 349.275 MPa and 328.695 MPa respectively, as shown in Figure 8. Higher 

residual stress is predicted for friction coefficient of 0.6 for both materials. 

 Figure 11 shows von Mises residual stress history using different scratching 

displacement amplitudes for Super CMV and Ti-6Al-4V materials respectively. The 

residual stress can be observed after complete unloading. Super CMV material 
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demonstrates lower residual stress compared to Ti-6Al-4V. The residual stress recorded 

for Super CMV with scratching displacement amplitudes of 0.05 mm, 0.1 mm and 0.2 

mm are 42.634 MPa, 44.380 MPa and 58.229 MPa, while for Ti-6Al-4V are 233.005 

MPa, 236.682 MPa and 278.541 MPa respectively as shown in Figure 12. Higher residual 

stress is predicted for higher scratching displacement amplitudes for both materials. 

 

 
 

Figure 10. The von Mises residual stress history for different friction 

coefficients. 

 

 

 
 

Figure 11. The Von Mises residual stress history for different displacement amplitudes. 
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 The von Mises residual stress is also affected by the friction coefficient and 

scratching displacement amplitude. The residual stress is noticeable after the complete 

unloading. The residual stress in both materials is higher for friction coefficient of 0.6 

because the effect of the frictional force is significant at the subsurface of the substrate, 

while for 0.9 friction coefficient, the effect is mainly on the surface because of its higher 

surface traction force. In addition, the residual stress is greater for higher displacement 

amplitude as the stress is applied on extended contact length compared to lower 

displacement contact length. Thus, higher remaining stress is captured for 0.2 mm of 

displacement. The different materials properties lead to lower residual stress in Super 

CMV than Ti-6Al-4V alloys. 

 

CONCLUSIONS 

 

The main aim of the present study is to examine the influence of friction coefficient and 

scratching displacement amplitude on the von Mises residual stress along with normal 

and shear stress distributions for Super CMV and Ti-6Al-4V materials using cylinder-on-

flat contact configuration FE model. FE model using both materials gives a better 

agreement with Hertzian maximum contact pressure and contact half-width length where 

less than 5 % of error is recorded. It is found that the effect of higher friction coefficient 

and displacement amount can be noticeable during the scratching where normal stress 

reduces due to tensile normal stress. The higher friction coefficient causes shear traction 

and results in significant shear stress, while initial shear traction is reduced due to higher 

displacement amplitude as the displacement progressed from one element to another. The 

higher residual stress is recorded for friction coefficient of 0.6 and 0.2 mm scratching 

displacement amplitude. Super CMV material with friction coefficient of 0.3 and 

scratching displacement amplitude of 0.10 mm is recommended to be used in contact 

engineering applications due to its minimum possibility of fatigue.   
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