Optimization of TiO$_2$ nanowires synthesis using hydrothermal method for hydrogen production

I. Kustiningsih1,*, Sutinah1, M. Stefirizky1, Slamet2, W. W. Purwanto2

1Chemical Engineering Department, Faculty of Engineering, Sultan Ageng Tirtayasa University, Serang, 42118, Indonesia
2Chemical Engineering Department, Faculty of Engineering, University of Indonesia, Depok, 16424, Indonesia
* indar.kustiningsih@untirta.ac.id

ABSTRACT

Effects of sonication and hydrothermal treatment time on TiO$_2$ nanowires (TNWs) formation have been investigated. Sonication of TiO$_2$ P25 sol was performed using sonicator water bath Cole for 0.5, 1 and 2 hours followed by hydrothermal treatment. The hydrothermal treatment was carried out in a teflon lined stainless steel autoclave for 12, 15 and 24 hours. The samples were characterized by means of Scanning Electron Microscope (SEM), X-ray powder diffractometer (XRD), UV-vis diffuse and reflectance spectroscopy (UV-vis DRS). The specific surface area of each sample was determined by the BET nitrogen gas adsorption/desorption method. The photocatalytic activity of TNWs was evaluated with photocatalytic H$_2$ evolution from aqueous methanol solution. The result showed that the best TNWs was obtained at 1 hr sonication followed by hydrothermal process for 12 hours. By using this catalyst hydrogen production reached 82 µmol after 5h while using TiO$_2$ P25 could only reach 23 µmol.

Keywords: TiO$_2$; nanowires; photocatalytic; hydrogen; Sonication; Hydrothermal

INTRODUCTION

Hydrogen is well known as one of the alternative clean energy. However, on the earth hydrogen molecules do not form naturally but must be produced from other materials containing hydrogen [1,2]. Hydrogen production from photocatalytic water splitting provides a potential opportunity to obtain clean, renewable and storable energy from abundant water using solar energy. Titanium dioxide (TiO$_2$) is regarded as a material with excellent photocatalytic activity and has been investigated for water splitting [3-5], photocatalytic activity [6,7] and photovoltaics [8,9]. TiO$_2$ also has high stability, biological and chemical inertness, strong oxidizing power, non-toxicity and long term stability against photo and chemical corrosion [10-14].

In the last years, novel nanostructures such as nanowires [15], nanotubes [4,16-18], and nanorods [19-21] derived from TiO$_2$ have been employed in water splitting [22]. These structures have high specific surface area, ion-exchange and photocatalytic abilities [23,24]. In the last year, new routes to synthesize TiO$_2$ with 1D structure have been continuously proposed, such as thermal treatment [25], the assisted-template method [26,27], the sol-gel process [28], electrochemical anodic oxidation [4,29-32] and hydrothermal treatment [14-16,24,33,34]. Among these approaches, the hydrothermal treatment is regarded as one of the most efficient methods to synthesize 1d TiO$_2$ because it can dramatically decrease the required processing temperature from 850°C to 180°C.
under a more alkali environment [6]. Beside that this method has high reactivity, low energy requirement, relatively non-polluting set-up and simple control of the aqueous solution [22]. Previous researchers demonstrated that the hydrothermal method can also be applied to prepare TiO\textsubscript{2} nanowires but this method required a long reaction time [15,23]. Jitputi et al reported for producing TiO\textsubscript{2} NW by using hydrothermal method needed 75 h [23]. Therefore, the improvement of the hydrothermal synthesis process by shortening the reaction time is very important. In this study a simple and fast method of combined sonication and hydrothermal treatment is proposed for the production of TiO\textsubscript{2} nanowires. The objective of this study is to investigate the effect of sonication process on hydrothermal treatment for the production of TiO\textsubscript{2} nanowires, such as morphological structures, photoelectrochemical properties and photocatalytic activity as evidenced by hydrogen production.

METHODS AND MATERIAL

Synthesis of TiO\textsubscript{2} nanowires
In a typical synthesis, 3 grams of TiO\textsubscript{2} Degussa P25 were dispersed in 150 mL of 10M KOH and ultra-sonicated for 0.5 h, 1 h and 2 h followed hydrothermal process. The hydrothermal process was carried out at temperature of 150ºC with variation of reaction time for 12 h, 15 h and 24 h. After the hydrothermal treatment, the prepared samples were rinsed well with distilled water then further rinsed with Hydrogen Chloride and distilled water repeatedly until the pH value of the washing solution was lower than 7. The TiO\textsubscript{2} nanowires were obtained through centrifugation and further dried in a programmable furnace at 150ºC then calcined at 500ºC.

Characterization of TiO\textsubscript{2} nanowires
The crystal structures of as-synthesized TiO\textsubscript{2} nanowires were determined using a Philips PW 1710 XRD diffractometer with Cu Kα radiation (\(\lambda = 1.5406\AA\) at a scan rate of 0.025°s\(^{-1}\)). The crystallite size was calculated using a diffraction peak from Scherre’s formula [35]. Morphological observations were performed on a JEOL JSM-6390A scanning electron microscope (SEM) equipped with an energy dispersive X-ray detector. The transmission electron microscopy (TEM) analyses were conducted with a JEOL JEM-1400 electron microscope using a 120kV accelerating voltage. The band gap energy of the prepared samples was calculated using Kubelka-Munk equation [34]. Ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) was carried out using a Shimadzu 2450. The specific surface area of the catalysts was measured by BET of N\textsubscript{2} adsorption in a Quantachrome Autosorb-6.

Photocatalytic activity evaluation of TiO\textsubscript{2} nanowires
The photocatalytic activity test was performed using a pyrex reactor equipped with six black light lamps (10W, 352 nm) as the photon source. The powder TiO\textsubscript{2} nanowires was suspended in a 10% methanol/water mixture at a concentration of 1g/L. A magnetic stirrer was placed at the bottom of the reactor to ensure homogeneity of the suspension during reaction. The suspensions were then flushed with Argon gas for 15 minutes to remove undesired gases. Hydrogen was analyzed by gas chromatography (GC) using a Shimadzu steel column packed with molecular sieves and an Argon carrier.
RESULTS AND DISCUSSION

The effect of sonication time on the synthesis of TiO$_2$ nanowires

In order to investigate the effect of sonication on the formation of TiO$_2$ nanowires, samples were prepared using different treatments: 1 h sonication process followed 15 h hydrothermal treatment (TiO$_2$Nw-1s-15h) and 15 h hydrothermal treatment without sonication (TiO$_2$Nw-0s-15h). Figure 1(b1) and (b2) shows hydrothermal process for 15 hours without sonication has produced nanowires morphology but not uniform. With the addition of sonication process for 1 hour before hydrothermal treatment for 15 hours produced TiO$_2$ nanowires uniformly, it can be seen in Figure 1 (c1 and c2). The results indicated that the time of formation TiO$_2$ nanowires could be shortened by using combination of sonication and the hydrothermal process. It due to with sonication treatment the reaction of KOH on the surface of de-agglomerated TiO$_2$ particles was much faster and uniform [36]. The Sonication process was promoting the intercalation of K$^+$ into titania lattices and breaking the Ti-O-Ti bonds without altering the morphology of TiO$_2$ Degussa P25. As a result, formation trititanate sheets in hydrothermal treatment become faster than hydrothermal without sonication.

Figure 1. Scanning electron micrographs of (a) TiO$_2$ P25 and (b) TiO$_2$NWs-0s-15h (c) TiO$_2$NWs-1s-15h. a$_1$, b$_1$, c$_1$ are images at magnification 10,000; a$_2$, b$_2$, c$_2$ are at 50,000.

The SEM images of the samples obtained using sonication times of 0.5 (TiO$_2$ NWs 0.5s-15h), 1h (TiO$_2$ NWs 1s-15h) and 2 h (TiO$_2$ NWs 2s-15h) followed hydrothermal treatment for 15 h are shown at Figure 2. It shows the time of sonication greatly influenced on change in shape and morphology samples. Figure 2(a) shows the SEM image of sample subjected to sonication time of 0.5 h. It indicated that morphology of nanowires was formed but not yet uniform. It can be seen clearly on image which higher magnification at Figure 2(a2). Figure 2(b) shows the samples were found to be completely transformed into nanowires shapes after sonication 1 h followed by hidrothermal. However, the longer sonication time before hydrothermal treatment was undesirable for the formation of TiO$_2$ nanowires. The samples obtained sonication for 2h were wider and had morphology similar to nanoribbons.

3878
Figure 2. SEM of samples prepared using sonication and hydrothermal treatment, sonication for: (a) TiO$_2$ NWs 0.5s-15h; (b) 1 h; (c) 2h. a_1, b_1, c_1 are images at magnification 10,000; a_2, b_2, c_2 are at 50,000.

Effect of hydrothermal treatment on TiO$_2$ Nanowires formation

The reaction time of hydrothermal treatment plays an important role in the formation of TiO$_2$ nanowires. In order to investigate this, the TiO$_2$ nanowires were prepared with sonication process for 1 h and continued with hydrothermal treatment for 12 hours, 15 hours and 24 hours. The SEM images of the samples are shown in Figure 3.

Figure 3(a) shows that TiO$_2$ nanowires had formed in small amount after hydrothermal treatment for 12 hours. It was very different with the samples that produced through hydrothermal for 15 hours are shown at Figure 3(b). In this product, the morphology of TiO$_2$ nanowires was evenly formed and had a good shape. However, the longer duration of hydrothermal treatment with sonication for 1 hour did not provide a better form of TiO$_2$ nanowires. It can be seen clearly at Figure 3(c) that hydrothermal treatment for 24 hours generated TiO$_2$ nanowires which a wider and had morphology similar to nanoribbons.

The formation of TiO$_2$ nanowires occurred during the hydrothermal process. Due to reaction between TiO$_2$-P25 with KOH as solvent, some of Ti-O-Ti bonds of Titania crystals are broken to produce Ti-O-K and Ti-OH and layered as octatitanates (K$_2$Ti$_8$O$_{17}$) that are formed on the titania surface along the (0 1 0) lattice plans of TiO$_2$. Their (2 0 0) plans may parallel to the (0 1 0) lattice plan of TiO$_2$. Further hydrothermal reactions cause the nanowires to grow out along the (0 1 0) direction [36]. The growth of TiO$_2$ nanowires caused by high operating temperature and pressure in the autoclave during the hydrothermal process (T> 130°C), it caused no tendency to form a coil like nanotubes morphology. Further growth of nanowires increased during the hydrothermal time and it caused TiO$_2$ nanowires to grow along the direction of growing photocatalyst [38].
Optimization of TiO2 nanowires synthesis using hydrothermal method for hydrogen production

Figure 3. Scanning electron micrographs of sonication 1h followed hydrothermal treatment; (a) 12 h; (b) 15 h; (c) 24 h. a1, b1, c1 are images at magnification 10,000; a2, b2, c2 are at 50,000.

Figure 4 shows the Transmission electron Microscope of TiO2 nanowires from 1 h sonication followed 15 hydrothermal. It shows hydrothermal with KOH as a solvent produced wire-like morphology with a porous structure. The diameter of TiO2 nanowires was 5.7 nm. Yuan & Su (2004) reported that the morphology of nanowires usually has a diameter in the range of 5-10 nm [38].

Figure 4. The transmission electron microscope of TiO2 nanowires (a) image at magnification 50nm, (b) image at magnification 100 nm dan (c) diameter of TiO2 NWs

The morphology of the catalyst caused the significant difference of surface area. The surface area of TiO2 nanowires and nanopartikel were 115.74 m²/g and 32.77 m²/g respectively. The large surface area of TiO2 nanowires indicates this product had a porous structure. The surface area of TiO2 NWs was higher than TiO2 NW which obtained by other researcher. Jitputi et al (2008)
obtained the surface area of TiO$_2$ NW was 58.20 m2/g after hydrothermal treatment for 72 hours [15].

The X-Ray Diffraction of TiO$_2$ nanowires

The phase composition, crystallite size and crystallinity of TiO$_2$ were reported to have a great influence on photocatalytic activity such as water splitting.

![XRD patterns](image)

Figure 5. XRD patterns of (a) TiO$_2$ P25; (b) TiO$_2$ NWs-0s-12h; (c) TiO$_2$ NWs-0.5s-12h; (d) TiO$_2$ NWs-1s-12h; (e) TiO$_2$ NWs-2s-12h

Therefore, the XRD analysis of TiO$_2$ NWs was conducted in this research. Figure 5 shows the XRD patterns of TiO$_2$ P25 and TiO$_2$ NWs prepared with different sonication times followed hydrothermal treatment 12 h. The XRD patterns for TiO$_2$ NWs was obtained from combination 1 h sonication followed by hydrothermal for various time can be seen at Figure 6.

![XRD patterns](image)

Figure 6. XRD patterns of (a) TiO$_2$ P25; TiO$_2$ NWs 1h sonication followed hydrothermal for (b) TiO$_2$ NWs-1s-12h; (c) TiO$_2$ NWs-1s-15 h; (d) TiO$_2$ NWs-1s-24h
All products of TiO$_2$ nanowires, both Figure 5 and Figure 6 had completely crystalline structure of anatase TiO$_2$ but the TiO$_2$ Degussa P25 nanoparticles consisted of mixed anatase and rutile. This was because of at hydrothermal process, TiO$_2$ P25, which had anatase and rutile phase, transformed into sodium trititanate as amorphous, only anatase phase was formed after calcination at 500°C [24]. The rutile phase was formed at calcination temperature above 700°C. Similar results have been reported by many researchers, that only anatase phase was formed after calcination of hydrogen titanate nanotubes at 500°C [16,24,40,43].

Table 1. The crystalline size of TiO$_2$ P25 and TiO$_2$ nanowires at various time of sonication followed by hydrothermal treatment for 12 h

<table>
<thead>
<tr>
<th>Samples</th>
<th>Crystalline size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$ P-25</td>
<td>18</td>
</tr>
<tr>
<td>TiO$_2$ NWs-0s-12h</td>
<td>10.16</td>
</tr>
<tr>
<td>TiO$_2$ NWs-0.5s-12h</td>
<td>11.11</td>
</tr>
<tr>
<td>TiO$_2$ NWs-1s-12h</td>
<td>15.09</td>
</tr>
<tr>
<td>TiO$_2$ NWs-2s-12h</td>
<td>13.92</td>
</tr>
</tbody>
</table>

The Crystalline sizes of TiO$_2$ NWs at various time sonication and hydrothermal are summarized in Table 1 and Table 3 respectively. Both of Tables show that all crystalline sizes off product were smaller than TiO$_2$ P25. It due to during hydrothermal process TiO$_2$ P25 transformed into amorphous sodium tritatane.

Table 2. The crystalline size of TiO$_2$ nanowires prepared using combination 1 h sonication followed hydrothermal treatment at various times

<table>
<thead>
<tr>
<th>Samples</th>
<th>Crystalline size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$ P-25</td>
<td>18</td>
</tr>
<tr>
<td>TiO$_2$ NWs-1s-12h</td>
<td>15.09</td>
</tr>
<tr>
<td>TiO$_2$ NWs-1s-15h</td>
<td>8.92</td>
</tr>
<tr>
<td>TiO$_2$ NWs-1s-24h</td>
<td>12.72</td>
</tr>
</tbody>
</table>

The formation of anatase phase from amorphous sodium trititanate was occurred during calcinations treatment. Table 1 and Table 2 show that both of sonication time and hydrothermal time did not affect significantly at crystallite size. It also could be seen both Figure 5 and Figure 6. It indicates the formation of crystalline was strongly affected by temperature. The higher temperature of calcinations obtained higher crystallite size, but the temperature above 500°C could destroy the nanotubes shape and beside that the phase of crystal changed to be rutile [42].

The Diffuse Reflectance Spectroscopy of TiO$_2$ nanowires.
The Uv-visible diffuse reflectance spectra for TiO$_2$ P25 and TiO$_2$NWs-1s-1h are displayed in Figure 7. Band gap energy of the samples have been calculated using Kubelka-Munk equation [36]. Band gap energy is obtained by extrapolating the plot of the absorption coefficient at the y-axis versus energy at the x-axis.
Figure 7. The Diffuse Reflectance Spectroscopy of TiO$_2$ nanowires and TiO$_2$ P25

Figure 7 shows that spectra TiO$_2$ P25 and TiO$_2$ Nanowires are almost same. It showed that both of TiO$_2$ nanowires and TiO$_2$ P25 had strong UV absorption in the range 300 nm and 430 nm. The band gap energy of these samples can be seen at Table 3.

Table 3. Band gap energy of TiO$_2$ P25 and TiO$_2$ NWs-1s-12h

<table>
<thead>
<tr>
<th>Samples</th>
<th>Band Gap Energy, eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$ P25</td>
<td>3.05</td>
</tr>
<tr>
<td>TiO$_2$ NWs-1s-12h</td>
<td>2.90</td>
</tr>
</tbody>
</table>

As shown at Table 3, the bandgap for TiO$_2$ P25 was approximately 3.05 e, it was corresponded to the absorption of wavelength < 400 nm. The bandgap of the TiO$_2$ nanowires was almost same with bandgap of TiO$_2$ P25. It due to all prepared samples were crystalline TiO$_2$ and the crystallite sizes were almost same.

Effect of hydrothermal time on the TiO$_2$ Nanowires activity

The activity of TiO$_2$ nanowires was evaluated by photocatalytic water splitting from aqueous methanol solution. Methanol was used as the sacrificial agent because of its ability to remove the photogenerated holes, thereby it reduces the mutual electron–hole recombination [42]. Photocatalytic water splitting by using TiO$_2$ nanowires were obtained by combination 1h sonication and hydrothermal at various time are shown at Figure. 8. For comparison we also observed the activity of TiO$_2$ P25 for hydrogen production. Figure 8 shows all prepared samples had higher activity than TiO$_2$ P25, however the production of hydrogen by TiO$_2$ NWs 24 h was almost same as TiO$_2$ P25. It indicated that morphology influenced the activity of sample for producing hydrogen. It was probably due to nanowires morphology had a higher surface area than the TiO$_2$ P25 nanoparticles. This was due to the specific surface area that also influenced the activity of the samples. The large specific area could accommodate more reactions and also could be attributed to reducing recombination. Furthermore, it might have attributed to the wires shape on the TiO$_2$ NT that allows for more effective contact between active site, photons and water molecules, which then results in better photocatalytic activity.
Figure 8. Hydrogen evolution over TiO$_2$ P25 and TiO$_2$ NWs at various hydrothermal treatment (V$_{\text{solution}}$ = 500 ml, catalyst = 0.5 g, light source UV, Methanol concentration = 10%v).

Figure 8 shows TiO$_2$ NWs was prepared using 1 h sonication followed 12 h hydrothermal exhibited higher than other TiO$_2$ nanowires. Hydrogen was obtained using this catalyst after 5 h was 82 µmol. It was about two times higher than TiO$_2$ NWs from hydrothermal for 24h. Even though TiO$_2$ NWs-1s-15h has the best morphology of nanowires, the crystallinity of TiO$_2$NWs-1s-15h is lower than that of TiO$_2$ NWs-1s-12h. It can be seen at Table 1 and Table 2. It can be seen clearly that hydrogen production was affected to morphology and also crystallinity of catalyst.

CONCLUSIONS

TiO$_2$ Nanowires with high crystallinity and large surface area has been successfully synthesized with faster reaction time by combination sonication and hydrothermal treatment. The morphology and crystallinity of catalysts played significant role in the specific surface area and their activity for producing hydrogen. The TiO$_2$ NWs was synthesized by 1h sonication followed hydrothermal treatment for 12 h produced hydrogen two fold than that of TiO$_2$ nanoparticles.

ACKNOWLEDGMENTS

The main financial support from the Ministry of Research and Technology by Hibah Insentif Dasar is gratefully acknowledged.

REFERENCES

Optimization of TiO2 nanowires synthesis using hydrothermal method for hydrogen production

[41] Pang YL, Abdullah AZ, Bhatia S. Effect of annealing temperature on the characteristics, sonocatalytic activity and reusability of nanotubes TiO$_2$ in the degradation of Rhodamine B. Applied Catalysis B: Environmental. 2010;100:393-402.
