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ABSTRACT 

 

In this study, models based on artificial neural networks (ANN) and regression analysis 

were developed to predict the surface roughness during the turning of red brass (C23000), 

using a high-speed steel (HSS) tool. The full factorial design approach was used for 

experimentation to achieve a high level of confidence. The influence of cutting 

parameters (cutting speed, feed rate and depth of cut) on the surface roughness was also 

investigated using ANOVA. The ANN model having hyperbolic tangent sigmoid (tansig) 

and linear (purelin) transfer functions was used for the hidden and output layers 

respectively. The regression model based on the power law was also developed.  It was 

found that at a speed of 840 m/sec and depth of cut of 0.1 mm, the surface roughness 

changed by 11.3% when changing the feed rate by 5.6%. However, the surface roughness 

changed by only 6.8% when changing the velocity by 6% at the feed rate of 0.12 mm and 

depth of cut 0.1 mm. A similar trend was observed for different feed rates, speeds and 

depths of cut. It was concluded that the feed rate was the most significant factor 

influencing the surface roughness, followed by the depth of cut and cutting speed. The 

models developed were compared using statistical methods: coefficient of determination 

(R2) and mean absolute percentage error (MAPE). R2 was found to be 0.99784 and 0.9969 

for the ANN and regression models, respectively. Similarly, MAPE was found to be 

1.4243% and 4.8161% for the ANN and regression models respectively. It was concluded 

that the ANN model is a superior choice over the multiple regression model for the 

prediction of surface roughness. The accuracy of the ANN can be attributed to its ability 

to capture the nonlinearities involved in the turning operation. 

 

Keywords: Artificial neural network; brass; regression analysis; surface roughness; 

         turning. 

  

INTRODUCTION 

 

Brass and brass alloys are widely used as industrial materials because of their excellent 

characteristics such as high corrosion resistance, non-magnetism and good machinability 

[1]. It is necessary to achieve a desired surface topography of a mechanical component 

during the machining operation, as the surface roughness significantly influences its 

tribological properties during its useful life. A good surface finish improves the wear and 

friction characteristics and also increases the fatigue life of a component [2]. In order to 

achieve the desired surface finish, a good predictive model is required for stable 

machining [1]. The surface finish in turning has been found to be influenced to varying 

extents by the feed rate, work material characteristics, work hardness, unstable built-up 

edges, cutting speed, depth of cut, cutting time, tool–nose radius and cutting tool edge 
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angles, stability of the machine tool and workpiece setup, chatter and use of cutting 

fluid [3]. Surface roughness is mostly based on the cutting parameters (cutting speed, feed 

rate, and depth of cut) and sometimes some other parameters [4]. In the literature, various 

models for the optimum surface roughness have been reported [5-10]. The feed rate was 

found to be the dominant factor among the cutting parameters (cutting speed, feed rate 

and cutting time) on the surface roughness and flank wear during the turning of AISI H11, 

using the response surface methodology (RSM) [11, 12]. Surface roughness was found to 

be influenced by the feed rate during the turning of mild steel with coated carbide tools 

using RSM [3]. Depth of cut was found to have an insignificant effect on the surface 

roughness during turning of AISI P20 using CVD and PVD coated carbide tools [4, 12-

14]. Several techniques have been used for the modelling and optimization of surface 

roughness during the turning operation, e.g. regression analysis, genetic algorithm, ANN, 

Taguchi method etc. A genetic algorithm approach was used for prediction of the surface 

roughness of mild steel in a turning operation [5, 15]. Surface roughness during the 

turning of free machining steel [16] and AISI 4340 [17] was studied using ANN [16, 18, 

19] and multiple regression [17], and it was found that the feed rate had the dominant 

influence, among the cutting parameters, on the surface roughness. During the machining 

of glass fibre reinforced plastic (GFRP) pipes using the response surface methodology 

and a carbide tool, four parameters (cutting speed, depth of cut, feed rate and fibre 

orientation) were selected. It was found that the depth of cut had the minimum effect on 

the surface roughness [20]. A correlation between cutting velocity, feed and depth of cut 

with the roughness evaluating parameters 𝑅𝑎 and 𝑅𝑡 was established using the Taguchi 

method [21]. A survey of the surface roughness prediction models developed and factors 

influencing surface roughness revealed that most of the surface roughness models were 

developed for steels [22].  Only a few references could be found in the literature where 

machining of brass has been investigated, e.g. [1] investigated the effect of machining 

parameters on the surface quality of brass (60/40) in CNC end milling using AFNIS 

modelling. Machining operations of steels have been investigated extensively, using 

different cutting tools and modelling techniques. However, alloys, particularly brass, have 

not been the focus of researchers as much as steels have been. The intention of the present 

research work was to develop a surface roughness prediction model and investigate the 

effect of cutting parameters during the turning of red brass (C23000) using regression 

analysis and ANN.  

 

METHODS AND PROCEDURES 

 

Regression Model 

Surface roughness being a nonlinear function of cutting parameters [3, 16], we assume a 

power law model to take nonlinearity into account. The model of predicted surface 

roughness, 𝑅𝑎 can thus be expressed in nonlinear form as Eq. (1) [23]: 

 

      𝑅𝑎 = 𝑘∏𝑝𝑖
𝑐𝑖   

𝑛

𝑖=1

                                                      (1) 

 

where 𝑝𝑖, and 𝑐𝑖  𝑖 = 1,2,3…𝑛  are the cutting parameters and model parameters 

respectively. 

Eq. (1) can be rewritten as Eq. (2) [3]: 
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𝑅𝑎 = 𝑘𝑝1
𝑐1𝑝2

𝑐2𝑝3
𝑐3 …… . . 𝑝𝑛

𝑐𝑛                                          (2) 
The parameters considered in the present study were the cutting speed (v), feed 

rate (f) and depth of cut (d). Thus Eq. (2) can be rewritten as Eq. (3) [3]: 

 

𝑅𝑎 = 𝑘  𝑣
𝑐1𝑓𝑐2𝑑𝑐3                                                           (3)  

 

Using logarithmic transformation, Eq. (3) can be rewritten as Eq. (4): 

 

𝑙𝑛𝑅𝑎 = 𝑙𝑛𝑘 + 𝑐1𝑙𝑛𝑣 + 𝑐2𝑙𝑛𝑓 + 𝑐3𝑙𝑛𝑑                                    (4)  
 

𝑌𝑟 = 𝑐𝑜 + 𝑐1𝑉 + 𝑐2𝐹 + 𝑐3𝐷                                             (5) 
 

where  𝑌𝑟 = 𝑙𝑛𝑅𝑎, 𝑐𝑜 = 𝑙𝑛𝑘, 𝑉 = 𝑙𝑛𝑣,  𝐹 = 𝑙𝑛𝑓, 𝐷 = 𝑙𝑛𝑑.  

The model parameters 𝑘, 𝑐1, 𝑐2 and 𝑐3 in Eq. (5) were evaluated by the least squares 

method using Eq. (6) [24]: 

 

𝐶 = [𝑍𝑇𝑍]−1[𝑍𝑇]  {𝑌𝑟}                                                 (6) 

where 𝐶 = {

𝑘
𝑐1
𝑐2
𝑐3

},    𝑍 =

{
 
 

 
 𝑉1 𝐹1 𝐷1
𝑉2 𝐹2 𝐷2…
…
𝑉𝑁

…
…
𝐹𝑁

…
…
𝐷𝑁}
 
 

 
 

 and  𝑌𝑟 =

{
 
 

 
 
(𝑙𝑛𝑅𝑎)1
(𝑙𝑛𝑅𝑎)2
(𝑙𝑛𝑅𝑎)3…
…

(𝑙𝑛𝑅𝑎)𝑁}
 
 

 
 

 

 

The value of 𝑐𝑜  is evaluated by back-substitution of  𝑘 into 𝑐𝑜 = 𝑒
𝑘 . And finally, the 

model equation is obtained by substituting the values of 𝑘, 𝑐1,  𝑐2 and  𝑐3 in Eq. (3). 

 

ANN Model 

ANN has been the focus of attention of researchers because of its capacity to solve non-

linear problems. Thus, ANN was also used to predict the surface roughness in the present 

study. An ANN model has several layers depending upon the nature and complexity of 

the problem [25]. The data from the input layer was processed in the hidden layer. The 

transfer function used in the hidden layer was hyperbolic tangent sigmoid (tansig), as in 

Eq. (7a). The output from the hidden layer was fed to the output layer having a linear 

transfer function (purelin) as in Eq. (7b): 

 

𝐹 =
𝑒𝑛 − 𝑒−𝑛

𝑒𝑛 + 𝑒−𝑛
                                                           (7𝑎) 

 

𝑓 = 𝑛                                                                    (7𝑏) 
The weight changes were evaluated by Eq. (8). The weights were fed back after every 

iteration till the reduced error rate resulted in an improvement of the output of the training. 

The training was stopped when 𝑅2 = 1 was attained. 

 

∆𝑤𝑗𝑖(𝑛) = 𝛼Δ𝑤𝑗𝑖(𝑛 − 1) + 𝜂𝛿𝑗(𝑛)𝑅𝑎𝑖(𝑛)                               (8)        

 

where ∆𝑤𝑗𝑖(𝑛) is the change in weights, 𝛼 is the momentum coefficient, 𝛿𝑗 is the error 

scaled by the signal slope,  𝜂 is the learning rate parameter and 𝑅𝑎𝑖(𝑛) is the output after 

the 𝑛𝑡ℎ iteration. The structure of the ANN model is shown in Figure 1. 
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Figure 1. ANN architecture used for surface roughness modelling. 

 

The first step in the ANN is training, in which the inputs, viz. cutting speed (𝑣),  
feed rate, (𝑓) and depth of cut, (𝑑), were introduced to the network along with the desired 

output of surface roughness. Initially, the weights were set randomly and were altered by 

a back-propagation algorithm to achieve a satisfactory level (𝑅2 = 1) of performance by 

minimizing the global error. The back-propagation algorithm is a learning technique that 

adjusts weights in ANN by propagating weight changes in a backward direction (from the 

output to input neurons). When a satisfactory level of performance, i.e. coefficient of 

determination 𝑅2 = 1, was achieved, the training was stopped and the network with 

current weights was used to predict the surface roughness. The parameters used for the 

ANN are tabulated in Table 1.  

 

Table 1. Training parameters for ANN. 

 

Number of neurons on the layer Input: 3,   hidden: 5   and   output: 1 

Initial weight and biases Randomly between -1 and 1 

Activation function Tansig 

Learning rate 0.05 

Momentum constant 0.95 

 

Several independent runs having different initial random weights were performed to attain 

a solution with minimum error. The mean square error (MSE) during the learning process 

was calculated by Eq. (9) [26]:  

 

𝑀𝑆𝐸 =
∑ |𝑆𝑖−𝑅𝑎𝑖|

2𝑁
𝑖=1

𝑁
                                                  (9)                      

 

where 𝑆𝑖 and 𝑅𝑎𝑖 are the actual and predicted values of surface roughness. The weights 

between the hidden and output layers were adjusted and were again calculated using 

Eq. (8) [26]. 

 

EXPERIMENTATION 

 

Design of Experiments 

Design of experiments, usually abbreviated as DOE, are strategies developed for the 

model fitting of physical experiments. The objective of DOE is the selection of points 

where the response should be evaluated. The criteria for optimal design of experiments 

are associated with the mathematical model of the process. Generally, these mathematical 

models are polynomials with an unknown structure, so the corresponding experiments are 
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designed only for every particular problem. The particular combination of runs defines 

an experimental design. The possible settings of each independent variable in the n-

dimensional space are called levels. A factorial experiment is an experimental strategy in 

which design variables are varied together, instead of one at a time. The three variables 

chosen in the turning operations were cutting speed, feed rate and depth of cut. Three 

operating levels were chosen as shown in Table 2. The experiments were performed by 

choosing one combination of cutting speed, feed rate and depth of cut. Two parameters 

were kept constant and the surface roughness was measured for three different values of 

the third parameter. Thus, according to the full factorial design, 27 (33) were performed.  

 

Table  2.  Process parameters with different operating levels. 

 

Input parameters Levels 

 Level 1 Level 2 Level 3 

Cutting speed (m/sec) 840 1000 1280 

Feed rate (mm) 0.12 0.40 0.80 

Depth of cut (mm ) 0.10 0.13 0.16 

 

Experimental Setup 

 

In this study, cylindrical red brass bars of diameter 30 mm and 150 mm length as the work 

piece material and an HSS cutting tool were used. The experiments were performed on a 

Kiloshkar Enterprise 1550 lathe under dry conditions. Two parameters were kept fixed 

and three experiments were performed for three different values of the third variable 

parameter. Accordingly, 27 (33) experiments were performed. The parameters considered 

during the experimentation were feed rate, cutting speed and depth of cut. The surface 

roughness was measured by a Hommel Etamic WS roughness meter. The data obtained 

from the experiments are given in Table 3. 

  

Table 3.  Experimental data for model construction. 

 
Feed rate (mm/rev)                                                       Depth of cut (mm) 

   v=840 (mm/min)  v=1000 (mm/min)  v=1280 (mm/min) 

   0.10 0.13 0.16 0.10 0.13 0.16 0.10 0.13 0.16 

 0.12  2.8960 3.0640 3.0935  2.8560 3.1056 3.5730  3.2960 3.2101 4.1091 

 0.40  2.6107 2.9068 3.1261  2.3960 2.6460 3.2710  3.0760 3.3180 3.5661 

 0.80  2.5690 2.5320 2.5420  2.4260 2.6260 2.9190  2.6660 2.8540 3.0810 

 

RESULTS AND DISCUSSION 

 

Regression Model for Surface Roughness  

The data presented in Table 1 were used for developing the model equation. The 

coefficients of the model equation were obtained by the least squares method using Eq. 

(6). Accordingly Eq. (9) was obtained.  

 

𝑅𝑎 = 0.5179𝑣
0.3378𝑓0.3419𝑑−0.0940                                                  (9)   
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 It is clear from Eq. (9) that the feed rate has the most significant effect on the 

surface roughness of red brass, followed by cutting speed and least by the depth of cut. 

Also, from Eq. (9) it is observed that the surface roughness decreases with increase in the 

depth of cut, while it increases with increase in the feed rate and cutting speed. A 

quantitative comparison between the current work and that from the literature was not 

possible as no work has been reported on the turning of red brass. It has been found for 

mild steel using a carbide tool that the surface roughness decreases with increase in the 

speed and depth of cut and decreases with decrease in the feed rate [27]. It has been 

reported that the feed rate has a significant effect on the surface roughness during the 

turning of brass [28], which has been observed in the present work also. This type of 

behaviour can be attributed to the brittleness of the red brass because the chips are not 

continuous as they are in the case of ductile materials. The comparison of the predicted 

and experimental values is shown in Figure 2.  

 

 
 

Figure 2.  Measured and predicted values of surface roughness using regression model. 

 

It is clear from Figure 2 that the experimental values are in close agreement with 

the values predicted by the regression method. The mean square error in the regression 

model was found to be 0.0280. In order to check the adequacy of the proposed model, 

ANOVA was used. The results of the ANOVA are presented in Table 3. The F value of 

the regression model was found to be 35.02 and was compared with the standard tabulated 

value (4.76) for the confidence level of 95%. The model was found to be adequate, as the 

value of Fcritical is less than the F value obtained. Further, the p-value was found to be 0.01 

and is lower than 0.05 (i.e. α = 0.05, or 95% confidence). This indicates that the model is 

statistically significant.  

 

Table 3. ANOVA table for surface roughness (95% confidence level). 

 

Source of variation DF SS MS F 

Regression 3 3.3653 1.121 35.03 

Residual 23 0.7547 0.032 Fcritical=4.76 

Total 26 4.1200   
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ANN Model 

In order to develop the ANN model, the network was trained by a set of 14 values out of 

27 experimental values. After successful training, the network was used to predict the 

surface roughness for validation and testing. The network was validated and tested for 5 

(each) experimental values. From Figure 3, it is clear that during training all the 

experimental and predicted values coincide perfectly on the regression line, i.e. 𝑅2 = 1. 

This indicates that the network was satisfactorily trained. At this stage, 𝑅2 was found to 

be equal to 0.98766 and 0.99962 for validation and testing respectively. During testing 

and validation of the network, a few experimental values are slightly away from the 

regression line. Consequently, the value of R2 becomes slightly less than 1 and as a result 

R2 = 0.99784 for the ANN model. The training was stopped and all the 27 experimental 

values were used to predict the surface roughness from the ANN model.  

 

 
 

Figure 3. Target v/s output of the ANN model. 

 

The comparison of the values predicted by ANN with the experimental values is 

shown in Figure 4. It is obvious that the error between the predicted and experimental 

values has been considerably reduced. The mean square error in the ANN model was 

found to be 0.0059. The results obtained were compared with the experimental results 

using statistical methods (𝑅2  and MAPE).  𝑅2  is interpreted as the proportion of the 

variance in the dependent variable that is predictable from the independent variable [28]. 
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𝑅2 = 1 − (
∑ (𝑡𝑖−𝑜𝑖)

2𝑁
𝑖=1

∑ (𝑜𝑖)
2𝑁

𝑖=1

)                       (10) 

 

The mean absolute percentage error (MAPE), also known as the mean absolute 

percentage deviation (MAPD), is a measure of the accuracy of a method for constructing 

fitted time series values in statistics, specifically in trend estimation, and is defined as 

[25]: 

𝑀𝐴𝑃𝐸 = (
1

𝑁
∑ |

𝑡𝑖−𝑜𝑖

𝑡𝑖
|𝑁

𝑖=1 )    (11) 

where 𝑁 is the number of experiments. 

 

Table 4. Comparison of ANN and regression model. 

 

Parameter R2 MSE MAPE 

Regression model 99.690% 0.0280 4.8161% 

ANN model 99.784% 0.0059 1.4243% 

 

Table 5.  Percentage error of ANN and regression model. 

 

 ANN  Regression  
  Exp.No 

No 

 Error %error  Error %error 

1  0.0690     2.7621     0.1126     4.3113     

2  0.1747   6.3932     0.1742     5.9923     

3  0.1920    6.5446     0.1924     6.1552     

4  0.1971    6.8433     0.1958     6.3660     

5  0.0910    2.8884     0.1675     5.0480     

6  0.0992     2.9329      0.1838    5.1535   

7  0.2522     9.5181  0.2537    10.5892      

8  0.2514    8.6738  0.2524     9.5395     

9  0.1586    5.0969  0.1593     4.8707     

10  0.0913     3.9007  0.2284    8.8895    

11  0.0266     1.0389  0.0283    1.1183    

12  0.0010     0.0364  0.2067       8.1315    

13  0.0310     1.1487      0.0326    1.2219    

14  0.0967     3.2759      0.0979    3.4288    

15  0.0879     2.7737      0.0881  2.8580 

16  0.0547 2.2033  0.0566 2.3349 

17  0.1584         5.8328     0.0897     3.4143     

18  0.2060 7.0657  0.0035     0.1207     

19  0.0989    3.5354  0.0986     3.4061     

20  0.0041     0.1340  0.0041    0.1334    

21  0.1922 5.8507  0.1916     6.1923     

22  0.0108     0.3349  0.0708    2.1496    

23  0.3174    8.9969  0.3178     9.8986         

24  0.4379     1.1562  0.3217    7.8281    

25  0.1101     3.7107  0.1111    3.8895    

26  0.1399    4.3105  0.1400     4.5069 

 

 
27  0.2211 6.3454  0.0886 2.4804 



 

Haneif and Wani / Journal of Mechanical Engineering and Sciences   10(1) 2016     1835-1845 
 

1843 
 

 
 

Figure 4.  Measured and predicted values of surface roughness using ANN. 

 

The percentage error of the ANN and regression models is presented in Table 5. 

It is clear from Table 5 that the maximum error in the ANN and the regression model is 

9.5181% and 9.8986% respectively. Also, from Table 5 the minimum errors in the ANN 

and regression model are 0.0364% and 0.1207% respectively. On the basis of the R2, 

MAPE and errors evaluated, it can be stated that the ANN model gives more accurate 

results than the regression model.  

 

 CONCLUSIONS 

 

In this paper, regression and ANN models were developed for the prediction of surface 

roughness in a turning operation of red brass. The DOE was based on the full factorial 

design methodology. Of the three cutting parameters (feed rate, cutting speed and depth 

of cut), surface roughness was found to be most significantly influenced by the feed rate 

and least by the depth of cut. It was also found that there is an increase in surface 

roughness with increase in the feed rate and cutting speed, whereas increase in the depth 

of cut decreases the surface roughness value. The developed models were evaluated for 

their capability to predict surface roughness on the basis of R2, MAPE and MSE. The R2 

was 99.784% for the ANN and 99.69% for the regression model. It was concluded that 

the proposed models can be used effectively to predict surface roughness. Based on the 

percentage error of the ANN and regression model, the ANN was found to be more 

accurate than the regression model. 
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